报告人简介
王淋生,博士毕业于南京大学,导师为田刚教授,目前在复旦大学上海数学中心从事博士后研究。主要从事代数几何和微分几何尤其是K-稳定性相关问题的研究,结果发表于Math.Z.Math.Nachr. 等权威数学期刊。
内容简介
If the delta invariant of a Fano manifold is greater than one, then the Fano manifold is K-stable and admits a KE metric. In this case, it admits no nontrivial holomorphic vector field. For a Fano manifold with nontrivial holomorphic vector fields, we will introduce another "delta" invariant characterizing its K-polystability. Moreover, the g-weighted version of this invariant can be used to characterizing the existence of g-solitons on a Fano manifold. As an application, we will give a family of Fano threefolds admitting g-solitons for any weight function g.